3.101 \(\int \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \, dx\)

Optimal. Leaf size=62 \[ \frac{a \tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}}+\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

[Out]

(Sqrt[a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c +
d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.103651, antiderivative size = 62, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {2772, 2773, 206} \[ \frac{a \tan (c+d x)}{d \sqrt{a \cos (c+d x)+a}}+\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2,x]

[Out]

(Sqrt[a]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*Tan[c + d*x])/(d*Sqrt[a + a*Cos[c +
d*x]])

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+a \cos (c+d x)} \sec ^2(c+d x) \, dx &=\frac{a \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}+\frac{1}{2} \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac{a \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}+\frac{a \tan (c+d x)}{d \sqrt{a+a \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.093715, size = 79, normalized size = 1.27 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \sqrt{a (\cos (c+d x)+1)} \left (2 \sin \left (\frac{1}{2} (c+d x)\right )+\sqrt{2} \cos (c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2,x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]*(Sqrt[2]*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d
*x] + 2*Sin[(c + d*x)/2]))/(2*d)

________________________________________________________________________________________

Maple [B]  time = 2.484, size = 379, normalized size = 6.1 \begin{align*}{\frac{1}{d}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -2\,a \left ( \ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) +\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+2\,\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \right ){\frac{1}{\sqrt{a}}} \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) -\sqrt{2} \right ) ^{-1} \left ( 2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2} \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(1/2)*sec(d*x+c)^2,x)

[Out]

cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*a*(ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/
2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a)))*sin(1/2*d*x+1/2*c)^2+ln(-4/(-2*c
os(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*
a+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/
2*c)+2*a))*a+2*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))/(2*cos(1
/2*d*x+1/2*c)+2^(1/2))/sin(1/2*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [B]  time = 1.97755, size = 1580, normalized size = 25.48 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^2,x, algorithm="maxima")

[Out]

-1/4*((4*sqrt(2)*sin(1/2*d*x + 1/2*c) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*co
s(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2
*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) +
 2))*cos(2*d*x + 2*c)^2 + (4*sqrt(2)*sin(1/2*d*x + 1/2*c) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2
*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 +
2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/
2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c)
+ 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*si
n(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*cos(
3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - 2*(2*sqrt(2)*sin(3/2*d*x + 3/2*c) - 4*sqrt(2)*sin(1/2*d*x + 1/2*c) + log(2
*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x +
1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqr
t(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d
*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 -
2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c) - 4*(sqrt(2)*cos(2*d*x
+ 2*c) + sqrt(2))*sin(5/2*d*x + 5/2*c) - 4*sqrt(2)*sin(3/2*d*x + 3/2*c) + 4*sqrt(2)*sin(1/2*d*x + 1/2*c) - log
(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x
+ 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*s
qrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2
*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2
- 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sqrt(a)/((cos(2*d*x + 2*c)^2 + sin(2*d
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*d)

________________________________________________________________________________________

Fricas [B]  time = 1.68303, size = 377, normalized size = 6.08 \begin{align*} \frac{{\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{4 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^2,x, algorithm="fricas")

[Out]

1/4*((cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c
) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(d*x +
c) + a)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (\cos{\left (c + d x \right )} + 1\right )} \sec ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(1/2)*sec(d*x+c)**2,x)

[Out]

Integral(sqrt(a*(cos(c + d*x) + 1))*sec(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 3.63426, size = 336, normalized size = 5.42 \begin{align*} \frac{\sqrt{2}{\left (\frac{\sqrt{2} a^{\frac{3}{2}} \log \left (\frac{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac{8 \,{\left (3 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a^{\frac{3}{2}} - a^{\frac{5}{2}}\right )}}{{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}}\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^2,x, algorithm="giac")

[Out]

1/4*sqrt(2)*(sqrt(2)*a^(3/2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 -
 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(
2)*abs(a) - 6*a))/abs(a) + 8*(3*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a^(3/2)
- a^(5/2))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1
/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2))/d